头孢菌素母核双键异构化的研究进展

姚柳端,金国有,刘晓红,刘学斌

主办:上海医药工业研究院
   中国药学会
   中国化学制药工业协会
ISSN 1001-8255   CN 31-1243/R   ZYGZEA
中国医药工业杂志 ›› 2014, Vol. 45 ›› Issue (10) : 978-985.
综述与专论 Review

头孢菌素母核双键异构化的研究进展

作者信息 +

Research Progress on Isomerization of Double Bond in Cephalosporin Pharmacophore

Author information +
History +

摘要

头孢菌素的Δ2 异构体已被证实不具有抗菌活性,头孢菌素母核双键异构化将严重影响其药效。但在对头孢菌素进行结构修饰时,母核双键往往发生异构化,导致目标产物Δ3 异构体不同程度地混有Δ2 异构体。另外,前体药头孢菌素酯在体内水解时,部分Δ3 异构体药物可能转化为Δ2 异构体。本文综述了头孢菌素母核双键异构化机制,Δ3 异构体和Δ2异构体的性质差异、合成及相互转化等研究进展。

Abstract

The Δ2 isomers of cephalosporin have been proved to be antibacterially inactive. However, the structural modification of cephalosporin may result in the isomerization of the double bond in the cephem nucleus.Sometimes the isomerization also occurs in the hydrolysis of the cephalosporin prodrug in vivo. In this paper, the research progress in the isomerization mechanism, the different properties, the synthesis and converse technology between the Δ3 ceph-3-em and Δ2 ceph-2-em, is reviewed.

关键词

头孢菌素 / 异构化 / &Delta / 3 异构体 / &Delta / 2 异构体 / 合成

引用本文

导出引用
姚柳端,金国有,刘晓红,刘学斌. 头孢菌素母核双键异构化的研究进展. 中国医药工业杂志. 2014, 45(10): 978-985
YAO Liuduan, JIN Guoyou, LIU Xiaohong, LIU Xuebin. Research Progress on Isomerization of Double Bond in Cephalosporin Pharmacophore. Chinese Journal of Pharmaceuticals. 2014, 45(10): 978-985

参考文献

[1] Abraham EP, Newton GGF. The structure of cephalosporin C[J]. Biochem J, 1961, 79(2): 377-393.

[2] Hodgkin DC, Maslen EN. The X-ray analysis of the structure of cephalosporin C [J]. Biochem J, 1961, 79(2): 393-402.

[3] Green GFH, Page JE, Staniforth SE. Cephulosporanic acids.Part I. Infrared absorption and proton magnetic resonunce spectra of cephalosporin and penicillin analogues [J]. J

Chem Soc, 1965: 1595-1605.

[4] Cocker JD, Eardley S, Gregory GI, et al. Cephalosporanic acids. Part IV. 7-Acylamidoceph-2-em-4-carboxylic acids [J].J Chem Soc (C), 1966: 1142-1151.

[5] Ho u JP, Po o l e JW. β -La c t am a n t i b i o t i c s : Th e i r physicochemical properties and biological activities in relation to structure [J]. J Pharm Sci, 1971, 60(4): 503-532.

[6] Chauvette RR, Flynn EH, Jackson BG, et al. Chemistry of ephalosporin antibiotics. II. Preparation of a new class of antibiotics and the relation of structure to activity [J]. J Am Chem Soc, 1962, 84(17): 3401-3402.

[7] Barrett GC, Kane VV, Lowe G. Studies related to cephalosporin C. Part I. 3-Hydroxy- and 3-amino-furan-2(5H)-ones [J]. J Chem Soc, 1964: 783-787.

[8] Morin RB, Jackson BG, Mueller RA, et al. Chemistry of cephalosporin antibiotics. III. Chemical correlation of penicillin and cephalosporin antibiotics [J]. J Am Chem Soc,1963, 85(12): 1896-1897.

[9] Frère JM, Kelly JA, Klein D, et al. Delta 2- and delta 3-cephalosporins, penicillinate and 6-unsubstituted penems.Intrinsic reactivity and interaction with beta-lactamases and D-alanyl-D-alanine-cleaving serine peptidases [J]. Biochem J, 1982, 203(1): 223-234.

[10] Van Heyningen E, Ahern LK. Chemistry of cephalosporins.XII. Configuration of the carboxyl group in .DELTA.2-cephalosporins [J]. J Med Chem, 1968, 11(5): 933-936.

[11] Cohen NC. Beta-lactam antibiotics: geometrical requirements for antibacterial activities [J]. J Med Chem, 1983, 26(2):259-264.

[12] Cohen NC, Ernest I, Scartazzini R, et al. Are the known Δ2-cephems inactive as antibiotics because of an unfavourable steric orientation of their 4α-carboxylic group? Synthesis

and biology of two Δ2-cephem-4β-carboxylic acids [J]. Helv Chim Acta, 1987, 70(7): 1967-1979.

[13] Van Heyningen EM. Cephalosporins [J]. Advan Drug Res,1967, 4: 1-70.

[14] Wolfe S, Hoz T. A semiempirical molecular orbital study of the methanolysis of complex azetidinones. A combined MM and QM analysis of the interaction of Δ2- and Δ3-cephems

with the penicillin receptor [J]. Can J Chem, 1994, 72(4):1044-1050.

[15] Wolfe S, Ro S, Kim CK, et al. Synthesis and decarboxylation of Δ2-cephem-4,4-dicarboxylic acids [J]. Can J Chem, 2001,79(8): 1238-1258.

[16] Bentley PH, Brooks G, Zomaya II. Phthalidyl esters of cephalosporins [ J] . Tetrahedron Lett, 1976, 17( 41) :3739-3742.

[17] Saab AN, Dittert LW, Hussain AA. Isomerization of cephalosporin esters: Implications for the prodrug ester approach to enhancing the oral bioavailabilities of cephalosporins [J]. J Pharm Sci, 1988, 77(10): 906-907.

[18] Cilento G. The expansion of the sulfur outer shell [J]. Chem Rev, 1960, 60(2): 147-167.

[19] Murphy CF, Koehler RE. Chemistry of cephlosporin antibiotics. XVIII. Synthesis of 7-acyl-3-methyl-2-cephem-4-carboxylic acid esters [J]. J Org Chem, 1970, 35(7):2429-2430.

[20] Richter WF, Chong YH, Stella VJ. On the mechanism of isomerization of cephalosporin esters [J]. J Pharm Sci, 1990,79(2): 185-186.

[21] Pop E, Brewster ME, Dinculescu A, et al. Isomerism of cephalosporin esters; theoretical and practical aspects [J].Heterocycles, 1994, 37(1): 477-486.

[22] Pop E, Brewster ME, Bodor N, et al. Theoretical aspects of cephalosporin isomerism [J]. Int J Quantum Chem, 1989,36(S16): 291-300.

[23] Pop E, Huang MJ, Brewstera ME, et al. On the mechanism of cephalosporin isomerization [J]. J Mol Struct (Theochem),1994, 315: 1-7.

[24] Kaiser GV, Cooper RDG, Koehler RE, et al. Chemistry of cephalosporin antibiotics. XIX. Transformation of .DELTA.2-cephem to .DELTA.3-cephem by oxidation-reduction at sulfur [J]. J Org Chem, 1970, 35(7): 2430-2433.

[25] 王文梅, 苏盛惠. 头孢菌素酸的酯化引起其α, β 双键移位的研究[J]. 有机化学, 1981, (6): 435-437.

[26] Wadde l l ST, Santor e l l i GM. Mi ld pr epa r a t ion of cephalosporin allyl and p-methoxybenzyl esters usingdiazoalkanes [ J] . Tetrahedron Lett, 1996, 37( 12) :1971-1974.

[27] Pankowski J, Winiarski J. A simple and efficient preparation of methoxymethyl esters of penicillins and cephalosporins [J]. Org Prep Proced Int, 1994, 26(3): 327-330.

[28] Mobashery S, Johnston M. Preparation of ceph-3-em esters unaccompanied by .DELTA.3 .fwdarw. .DELTA.2 isomerization of the cephalosporin [J]. J Org Chem, 1986,51(24): 4723-4726.

[29] Lee HW, Kang TW, Kim EN, et al. Preparation of ceph-3-em esters unaccompanied by δ3 to δ2 isomerization of the cephalosporin derivatives [J]. Synth Commun, 1999, 29(11):

1873-1887.

[30] Ganboa I, Palomo C. Phase-transfer esterification of the alkali metal salts of cephalosporins and penicillins [J].Synthesis, 1986, 1986(1): 52-54.

[31] Lee HW, Kang TW, Kim EN, et al. An effective and convenient esterefication of cephalospor in derivatives by using quarternary ammonium salts as catalysts [J]. Synth Commun, 1998, 28(23): 4345-4354.

[32] Matsueda R. A mild and efficient method for the esterification of cephalosporanic acids [ J] . Chem Lett, 1978, 7(9) :979-982.

[33] Walker DG, Brodfuehrer PR, Brundidge SP, et al. Use of bistrimethylsilylated intermediates in the preparation of semisynthetic 7-amino-3-substituted cephems. Expedient syntheses of a new 3-[(1-methyl-1-pyrrolidinio)methyl]-cephalosporin [J]. J Org Chem, 1988, 53(5): 983-991.

[34] Yan SS, Miller MJ, Wencewicz TA, et al. Syntheses and biological evaluation of new cephalosporin-oxazolidinone conjugates [J]. Med Chem Commun, 2010, 1(2): 145-148.

[35] Patterson LD, Miller MJ. Enzymatic deprotection of the cephalosporin 3′-acetoxy group using Candida antarctica lipase B [J]. J Org Chem, 2010, 75(4): 1289-1292.

[36] Lee M, Hesek D, Mobashery S. A practical synthesis of nitrocefin[J]. J Org Chem, 2005, 70(1): 367-369.

[37] Singh J, Kim OK, Kissick TP, et al. A practical synthesis of an anti-methicillin resistant Staphylococcus aureus cephalosporin BMS-247243 [J]. Org Process Res Dev, 2000,4(6): 488-497.

[38] Webber JA, Van Heyningen EM, Vasileff RT. Chemistry of cephalosporin antibiotics. XVII. Functionalization of deacetcephalosporin. Conversion of penicillin into cephalosporin [ J] . J Am Chem Soc, 1969, 91( 20) :5674-5675.
[39] Prasada Rao KVV, Dandala R, Handa VYK, et al. Novel approach for the conversion of natural Δ3 cephalosporin derivatives into corresponding Δ2 cephalosporin derivatives[J]. J Heterocyclic Chem, 2007, 44(6): 1513-1515.
 

基金

国家“重大新药创制”科技重大专项(2012ZX09201-101-001)

251

Accesses

0

Citation

Detail

段落导航
相关文章

/