利用固相合成法合成了LyP-1,一种对肿瘤细胞具有靶向能力的环状九肽,及其荧光素标记物(LyP-1-FAM)。利用巯基和马来酰亚胺的专属性反应制备了功能化脂质材料LyP-1-PEG 3400-DSPE。用成膜水化法制备了LyP-1 修饰的多柔比星(1)、荧光素(FAM) 和近红外染料(DiR) 脂质体,并评价其对SCI 375 黑素瘤细胞的体内外靶向性、细胞毒性和体内抑瘤效果。体外试验表明,SCI 375 细胞对LyP-1-FAM 或LyP-1 修饰的FAM 脂质体的摄取显著高于5-FAM 或普通FAM 脂质体。LyP-1 修饰及未修饰的DiR 脂质体分别尾静脉注射给予荷瘤裸鼠后,可见LyP-1 修饰组肿瘤组织的荧光强度较高,提示DiR 脂质体经LyP-1 修饰后体内靶向性提高。LyP-1 修饰及未修饰的1 脂质体在体外对SCI 375 细胞的IC50分别为3.4×10-6 和8.0×10-6 mol/L;修饰组在荷瘤裸鼠体内的抑瘤效果也显著高于未修饰组(P<0.05)。
Abstract
LyP-1, a cyclic nonapeptide with the function of tumor targeting, and its fluorescence labeled derivative (LyP-1-FAM) were synthesized by a solid-phase synthesis method. Functional lipid material, LyP-1-PEG 3400-DSPE, was synthesized by the specific reaction between sulfydryl and maleimide group. LyP-1-conjugated liposomes of doxorubicin (1), fluorescein (FAM) and DiR (a near-infrared fluorescent cyanine dye) were prepared by a film hydration method, respectively. The in vitro and in vivo targeting effects and anti-tumor effects on SCI 375 melanoma cells were investigated. The results showed that the in vitro cellular uptake of LyP-1-FAM or LyP-1-conjugated liposomes loaded with FAM (LyP-1-LS/FAM) was higher than 5-FAM or common liposomes of FAM (LS/FAM), respectively. After iv injection of LyP-1-conjugated liposomes of DiR (LyP-1-LS/DiR) or common liposomes of DiR (LS/DiR) to tumor bearing nude mice, the tumor fluorescence intensity of LyP-1-LS/DiR group was higher than LS/DiR group, which indicated that the targeting effect was improved after the modification of LyP-1. The IC50 values of LyP-1-conjugated liposomes of 1 (LyP-1-LS/1) and liposomes of 1 (LS/1) for SCI 375 cells were 3.4×10-6 and 8.0×10-6 mol/L, respectively. The tumor growth inhibition effect of LyP-1-LS/1 in tumor bearing nude mice was more significant than LS/1 (P<0.05).
关键词
LyP-1 /
脂质体 /
多柔比星 /
肿瘤靶向 /
肿瘤治疗
{{custom_keyword}} /
Key words
LyP-1 /
liposome /
doxorubicin /
tumor targeting /
tumor therapy
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors [J]. Nat Rev Clin Oncol, 2010, 7(11): 653-664.
[2] Marcucci F, Lefoulon F. Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress [J]. Drug Discov Today, 2004, 9(5): 219-228.
[3] Wang S, Low PS. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells [J]. J Controlled Release, 1998 , 53(1-3): 39-48.
[4] Qian ZM, Li H, Sun H, et al. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway [J]. Pharmacol Rev, 2002, 54(4): 561-587.
[5] Laakkonen P, Zhang L, Ruoslahti E. Peptide targeting of tumor lymph vessels [J]. Ann N Y Acad Sci, 2008, 1131: 37-43.
[6] Laakkonen P, Akerman ME, Biliran H, et al. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells [ J] . Proc Natl Acad Sci U S A, 2004, 101(25): 9381-9386.[7] Karmali PP, Kotamraju VR, Kastantin M, et al. Targeting of albumin-embedded paclitaxel nanoparticles to tumors [J]. Nanomedicine, 2009, 5(1): 73-82.
[8] Wang Z, Yu Y, Ma J, et al. LyP-1 modification to enhance delivery of artemisinin or fluorescent probe loaded polymeric micelles to highly metastatic tumor and its lymphatics [J].
Mol Pharm, 2012, 9(9): 2646-2657.
[9] Yan Z, Wang F, Wen Z, et al. LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor [J]. J Controlled Release, 2012, 157(1):
118-125.
[10] Kamber B, Hartmann A, Eisler K, et al. The synthesis of cystine peptides by iodine oxidation of S-trityl-cysteine and S-acetamidomethyl-cysteine peptides [J]. Helv Chim Acta,
1980 , 63(3): 899-915.
[11] Mulder WJ, Strijkers GJ, Griffioen AW, et al. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets [J]. Bioconjug Chem, 2004, 15(4):
799-806.
[12] Haran G, Cohen R, Bar LK, et al. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases [ J] . Biochim Biophys Acta, 1993, 1151(2): 201-215.
[13] Zhan C, Gu B, Xie C, et al. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect [J]. J Controlled Release, 2010, 143(1): 136-142.
[14] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays [J]. J Immunol Methods, 1983, 65(1-2): 55-63.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(81072593)、教育部高等学校博士学科点专项科研基金(20110071130011)、国家重大新药创制科技专项(2012ZX09304004)
{{custom_fund}}