功能性材料修饰的纳米粒在口服给药系统中的应用

刘湾, 杨世林, 金一, 奉建芳, 涂亮星

PDF(2385 KB)
主办:上海医药工业研究院
   中国药学会
   中国化学制药工业协会
ISSN 1001-8255   CN 31-1243/R   ZYGZEA
PDF(2385 KB)
中国医药工业杂志 ›› 2023, Vol. 54 ›› Issue (01) : 48-56. DOI: 10.16522/j.cnki.cjph.2023.01.005
专论与综述

功能性材料修饰的纳米粒在口服给药系统中的应用

  • 刘湾,杨世林,金一,奉建芳,涂亮星
作者信息 +

Applications of Functional Polymer Modified Nanoparticles in the Oral Drug Delivery System

  • LIU Wan, YANG Shilin, JIN Yi, FENG Jianfang, TU Liangxing
Author information +
History +

摘要

药物纳米粒常被用于改善口服给药的生物利用度,但因胃肠道中的黏液层、P 糖蛋白(P-gp) 外排及紧密连接等生 理屏障,纳米粒改善口服药物生物利用度的程度有限。功能性材料修饰的纳米粒因其功能性、可修饰和多样性成为了口 服药物载体策略的研究热点。该研究简述了限制药物生物利用度的因素,重点总结了通过改善药物理化性质和克服生物 屏障改善药物生物利用度的功能性纳米材料,以期为难溶性药物的载药策略研究提供参考和文献支持。

Abstract

Drug nanoparticles are often used to improve the bioavailability of oral drug delivery. However, due to physiological barriers such as mucus layer, P-glycoprotein(P-gp) efflux, and tight junctions in the gastrointestinal tract, the improvement of bioavailability of oral drugs by nanoparticles is limited. Nanoparticles modified with functional materials have become a research hotspot for oral drug delivery strategies due to their functionality, modifiability, and diversity. This study briefly describes the factors that limit the bioavailability of drugs and focuses on the summary of functional nanomaterials that enhance drug bioavailability by improving drug physicochemical properties and overcoming biological barriers to provide references and literature support for the study of drug loading strategies for poorly soluble drugs.

关键词

功能性材料 / 表面修饰 / 纳米粒 / 难溶性药物 / 口服吸收

Key words

functional material / surface modification / nanoparticle / poorly soluble drug / oral absorption

引用本文

导出引用
刘湾, 杨世林, 金一, 奉建芳, 涂亮星. 功能性材料修饰的纳米粒在口服给药系统中的应用. 中国医药工业杂志. 2023, 54(01): 48-56 https://doi.org/10.16522/j.cnki.cjph.2023.01.005
LIU Wan, YANG Shilin, JIN Yi, FENG Jianfang, TU Liangxing. Applications of Functional Polymer Modified Nanoparticles in the Oral Drug Delivery System. Chinese Journal of Pharmaceuticals. 2023, 54(01): 48-56 https://doi.org/10.16522/j.cnki.cjph.2023.01.005

参考文献

[1] ALI A, IJAZ M, KHAN Y R, et al.Role of nanotechnology in animal production and veterinary medicine [J].Trop Anim Health Prod, 2021, 53(5): 508. 

[2] KAWABATA Y, WADA K, NAKATANI M, et al. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications [J].Int J Pharm, 2011, 420(1): 1-10. 

[3] CHEN F, ZHANG Z R, YUAN F, et al.In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery [J].Int J Pharm, 2008, 349(1/2): 226-233. 

[4] SHAN W, ZHU X, LIU M, et al.Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by selfassembled nanoparticles for oral delivery of insulin [J]. ACS Nano, 2015, 9(3): 2345-2356. 

[5] CONE R A.Barrier properties of mucus [J].Adv Drug Deliv Rev, 2009, 61(2): 75-85. 

[6] WANG J, KONG M, ZHOU Z, et al.Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery [J]. Carbohydr Polym, 2017, 157: 596-602. 

[7] BOCSIK A, GRÓF I, KISS L, et al.Dual action of the PN159/KLAL/MAP peptide: increase of drug penetration across caco-2 intestinal barrier model by modulation of tight junctions and plasma membrane permeability [J]. Pharmaceutics, 2019, 11(2): 73. 

[8] GEHART H, CLEVERS H.Tales from the crypt: new insights into intestinal stem cells [J].Nat Rev Gastroenterol Hepatol, 2019, 16(1): 19-34. 

[9] 王秀坤, 李家实.细胞信号转导与中药机理研究[J].世 界科学技术, 2003, (6): 46-50.

[10] HYUN H, PARK J, WILLIS K, et al.Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solidtumors [J].Biomaterials, 2018, 180: 206-224. 

[11] LIVERSIDGE G G, CONZENTINO P.Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats [J].Int J Pharm, 1995, 125(2): 309-313. 

[12] MOU D S, CHEN H B, WAN J L, et al.Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility [J].Int J Pharm, 2011, 413(1/2): 237-244. 

[13] AHUJA B K, JENA S K, PAIDI S K, et al.Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension [J].Int J Pharm, 2015, 478(2): 540-552. 

[14] YI Y N, TU L X, HU K L, et al.The construction of puerarin nanocrystals and its pharmacokinetic and in vivoin vitro correlation(IVIVC) studies on beagle dog [J]. Colloids Surf B Biointerfaces, 2015, 133: 164-170. 

[15] MADHU.Difference between polymer and macromolecule [EB/OL].(2015-1-21) [2022-03-29].https://www. differencebetween.com/difference-between-polymer-andvs- macromolecule/. 

[16] YU M R, YANG Y W, ZHU C L, et al.Advances in the transepithelial transport of nanoparticles [J].Drug Discov Today, 2016, 21(7): 1155-1161. 

[17] BEZRODNYKH E A, ANTONOV Y A, BEREZIN B B, et al.Molecular features of the interaction and antimicrobial activity of chitosan in a solution containing sodium dodecyl sulfate [J].Carbohydr Polym, 2021, 270: 118352. 

[18] GRENHA A.Chitosan nanoparticles: a survey of preparation methods [J].J Drug Target, 2012, 20(4): 291- 300. 

[19] SUBBIAH R, RAMALINGAM P, RAMASUNDARAM S, et al.N,N,N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen [J].Carbohydr Polym, 2012, 89(4): 1289-1297. 

[20] ZENG H H, ZHU X, TIAN Q K, et al.In vivo antitumor effects of carboxymethyl chitosan-conjugated triptolide after oral administration [J].Drug Deliv, 2020, 27(1): 848- 854. 

[21] FAN W W, XIA D N, ZHU Q L, et al.Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery [J].Biomaterials, 2018, 151: 13-23. 

[22] SAKLOETSAKUN D, PERERA G, HOMBACH J, et al. The impact of vehicles on the mucoadhesive properties of orally administrated nanoparticles: a case study with chitosan- 4-thiobutylamidine conjugate [J].AAPS PharmSciTech, 2010, 11(3): 1185-1192. 

[23] A M P O N S A H - E FA H K K , D E M E L E R B , SURYANARAYANAN R.C h a r a c t e r i z i n g d r u g - polymer interactions in aqueous solution with analytical ultracentrifugation [J].Mol Pharm, 2021, 18(1): 246- 256. 

[24] BABU N J, NANGIA A.Solubility advantage of amorphous drugs and pharmaceutical cocrystals [J].Crys Growth Des, 2011, 11(7): 2662-2679. 

[25] KOSINSKI A M, BRUGNANO J L, SEAL B L, et al. Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system [J].Biomatter, 2012, 2(4): 195-201. 

[26] TIMMINS P, PYGALL S R, MELIA C D.Hydrophilic matrix tablets for oral controlled release [M].New York: Springer, 2014. [27] MAŠKOVÁ E, KUBOVÁ K, RAIMI-ABRAHAM B T, et al.Hypromellose-a traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery [J].J Control Release, 2020, 324: 695-727. 

[28] DOLENC A, KRISTL J, BAUMGARTNER S, et al. Advantages of celecoxib nanosuspension formulation and transformation into tablets [J].Int J Pharm, 2009, 376(1/2): 204-212. 

[29] SEEDHER N, BHATIA S.Solubility enhancement of Cox-2 inhibitors using various solvent systems [J].AAPS PharmSciTech, 2003, 4(3): E33. 

[30] HOMAYOUNI A, SADEGHI F, VARSHOSAZ J, et al. Comparing various techniques to produce micro/nanoparticles for enhancing the dissolution of celecoxib containing PVP [J].Eur J Pharm Biopharm, 2014, 88(1): 261-274. 

[31] SHINDE U A, JOSHI P N, JAIN D D, et al.Preparation and evaluation of N-trimethyl chitosan nanoparticles of flurbiprofen for ocular delivery [J].Curr Eye Res, 2019, 44(5): 575-582. 

[32] RAMALINGAM P, KO Y T.Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations [J].Pharm Res, 2015, 32(2): 389-402.

[33] LIU H L , TU L X, ZHOU Y X, e t a l.Improved bioavailability and antitumor effect of docetaxel by TPGS modified proniosomes: in vitro and in vivo evaluations [J]. Sci Rep, 2017, 7(1): 43372. 

[34] ZHAO J, FENG S S.Effects of PEG tethering chain length of vitamin E TPGS with a Herceptin-functionalized nanoparticle formulation for targeted delivery of anticancer drugs [J].Biomaterials, 2014, 35(10): 3340-3347. 

[35] LU J Q, HUANG Y X, ZHAO W C, et al.Design and characterization of PEG-derivatized vitamin E as a nanomicellar formulation for delivery of paclitaxel [J].Mol Pharm, 2013, 10(8): 2880-2890. 

[36] TANAKA K, KANAZAWA T, SHIBATA Y, et al. Development of cell-penetrating peptide-modified MPEGPCL diblock copolymeric nanoparticles for systemic gene delivery [J].Int J Pharm, 2010, 396(1/2): 229-238. 

[37] PENG W, JIANG X Y, ZHU Y, et al.Oral delivery of capsaicin using MPEG-PCL nanoparticles [J].Acta Pharmacol Sin, 2015, 36(1): 139-148. 

[38] RAMIREZ J C, HERRERA-ORDONEZ J, GONZALEZ V A.Kinetics of styrene minisuspension polymerization using a mixture PVA-SDS as stabilizer [J].Polymer, 2006, 47(10): 3336-3343. 

[39] RAMIREZ J C, FLORES-VILLASEOR S E, VARGASREYES E, et al.Preparation of PDLLA and PLGA nanoparticles stabilized with PVA and a PVA-SDS mixture: Studies on particle size, degradation and drug release [J].J Drug Deliv Sci Tec, 2020, 60: 101907. [40] JAIN A K, GOYAL A K, MISHRA N, et al.PEG-PLAPEG block copolymeric nanoparticles for oral immunization against hepatitis B [J].Int J Pharm, 2010, 387(1/2): 253- 262. 

[41] JEAN-MICHEL R, PATRICE H, XAVIER B.Assessment of PEG on polymeric particles surface, a key step in drug carrier translation [J].J Control Release, 2014, 185: 71-87. 

[42] PALACIO J, AGUDELO N A, LOPEZ B L.PLA/Pluronic® nanoparticles as potential oral delivery systems: preparation, colloidal and chemical stability, and loading capacity [J].J Appl Polym Sci, 2016, 133(33): 43828. 

[43] TOBÍO M, SÁNCHEZ A, VILA A, et al.The role of PEG on the stability in digestive fluids and in vivo fate of PEGPLA nanoparticles following oral administration [J]. Colloids Surf B Biointerfaces, 2000, 18(3/4): 315-323. 

[44] SMART J D.The basics and underlying mechanisms of mucoadhesion [J].Adv Drug Deliv Rev, 2005, 57(11): 1556-1568. [45] LIU J L, TU L X, CHENG M, et al.Mechanisms for oral absorption enhancement of drugs by nanocrystals [J].J Drug Deliv Sci Tec, 2020, 56: 101607. 

[46] DANHIER F, ANSORENA E, SILVA J M, et al.PLGAbased nanoparticles: an overview of biomedical applications [J].J Control Release, 2012, 161(2): 505-522. 

[47] IRANPOUR S, NEJATI V, DELIREZH N, et al. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid(PLGA) nanoparticle encapsulated tumor antigens [J]. J Exp Clin Cancer Res, 2016, 35(1): 168. 

[48] SILVA-ABREU M, CALPENA A C, ESPINA M, et al. Optimization, biopharmaceutical profile and therapeutic efficacy of pioglitazone-loaded PLGA-PEG nanospheres as a novel strategy for ocular inflammatory disorders [J].Pharm Res, 2018, 35(1): 11. 

[49] SAKUMA S, SUDO R, SUZUKI N, et al.Behavior of mucoadhesive nanoparticles having hydrophilic polymeric chains in the intestine [J].J Control Release, 2002, 81(3): 281-290. 

[50] PORNPITCHANARONG C , ROJANARATA T, OPANASOPIT P, et al.Maleimide-functionalized carboxymethyl cellulose: a novel mucoadhesive polymer for transmucosal drug delivery [J].Carbohydr Polym, 2022, 288: 119368. 

[51] ISHIZU K, YAMASHITA M, ICHIMURA A.Microsphere synthesis by emulsion copolymerization of methyl methacrylate with poly(acrylic acid) macromonomers [J]. Polymer, 1997, 38(21): 5471-5474. 

[52] LEE C F.The effect of aqueous medium contains poly(acrylic acid) on the morphology of composite polymer particle produced by two stages soapless seeded emulsion polymerization [J].Polymer, 2002, 43(21): 5763-5769. 

[53] CUI F Y, FENG Q , YIN C H.P r epar a t ion and characterization of mucoadhesive polymer-coated nanoparticles [J].Int J Pharm, 2006, 316(1/2): 154-161. 

[54] LI X P, UEHARA S, SAWANGRAT K, et al.Improvement of intestinal absorption of curcumin by cyclodextrins and the mechanisms underlying absorption enhancement [J].Int J Pharm, 2018, 535(1/2): 340-349. 

[55] LIU J L, SUN Y B, CHENG M, et al.Improving oral bioavailability of luteolin nanocrystals by surface modification of sodium dodecyl sulfate [J].AAPS PharmSciTech, 2021, 22(3): 133. 

[56] GAO Y, SUN Y, LIAO G L, et al.DSPE-PEG polymers for improving pulmonary absorption of poorly absorbed macromolecules in rats and relative mechanism [J].Drug Dev Ind Pharm, 2021, 47(2): 337-346. 

[57] TEKCHANDANI P, KURMI B D, PALIWAL R, et al. Galactosylated TPGS micelles for docetaxel targeting to hepatic carcinoma: development, characterization, and biodistribution study [J].AAPS PharmSciTech, 2020, 21(5): 174. 

[58] NA Y G, PHAM T M A, BYEON J J, et al.Development and evaluation of TPGS/PVA-based nanosuspension for enhancing dissolution and oral bioavailability of ticagrelor [J].Int J Pharm, 2020, 581: 119287. 

[59] LIU Y, JIANG Z F, HOU X F, et al.Functional lipid polymeric nanoparticles for oral drug delivery: rapid mucus penetration and improved cell entry and cellular transport [J].Nanomedicine, 2019, 21: 102075. 

[60] PIETRA M, GALIAZZO G, BRESCIANI F, et al. Evaluation of prognostic factors, including duodenal P-glycoprotein expression, in canine chronic enteropathy [J].Animals(Basel), 2021, 11(8): 2315. 

[61] ZHU H J , WANG J S, MARKOWITZ J S, e t al. Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana [J].J Pharmacol Exp Ther, 2006, 317(2): 850-857. 

[62] 张会杰, 熊玉卿.P -糖蛋白药物外排作用的研究进展 [J].中国临床药理学志, 2004, (4): 317-320. 

[63] WEMPE M F, WRIGHT C, LITTLE J L, et al.Inhibiting efflux with novel non-ionic surfactants: rational design based on vitamin E TPGS [J].Int J Pharm, 2009, 370(1/2): 93- 102. 

[64] BAEK J S, CHO C W.2-Hydroxypropyl-β-cyclodextrinmodified SLN of paclitaxel for overcoming P-glycoprotein function in multidrug-resistant breast cancer cells [J].J Pharm Pharm, 2012, 65(1): 72-78. 

[65] VASCONCELOS T, MARQUES S, SARMENTO B.The biopharmaceutical classification system of excipients [J]. Ther Deliv, 2017, 8(2): 65-78. 

[66] RUIZ-PICAZO A, LOZOYA-AGULLO I, GONZÁLEZÁLVAREZ I, et al.Effect of excipients on oral absorption process according to the different gastrointestinal segments [J].Expert Opin Drug Deliv, 2021, 18(8): 1005-1024. 

[67] YU S W, XU X L, FENG J F, et al.Chitosan and chitosan coating nanoparticles for the treatment of brain disease [J]. Int J Pharm, 2019, 560: 282-293. 

[68] MO Z J, BAN J F, ZHANG Y, et al.Nanostructured lipid carriers-based thermosensitive eye drops for enhanced, sustained delivery of dexamethasone [J].Nanomedicine, 2018, 13(11): 1239-1253. 

[69] MUNISWAMY V J, RAVAL N, GONDALIYA P, et al. ‘Dendrimer-Cationized-Albumin’ encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin [J].Int J Pharm, 2019, 555: 77- 99.

基金

国家自然科学基金项目(81960717)
PDF(2385 KB)

301

Accesses

0

Citation

Detail

段落导航
相关文章

/