
功能性材料修饰的纳米粒在口服给药系统中的应用
刘湾, 杨世林, 金一, 奉建芳, 涂亮星
功能性材料修饰的纳米粒在口服给药系统中的应用
Applications of Functional Polymer Modified Nanoparticles in the Oral Drug Delivery System
功能性材料 / 表面修饰 / 纳米粒 / 难溶性药物 / 口服吸收 {{custom_keyword}} /
functional material / surface modification / nanoparticle / poorly soluble drug / oral absorption {{custom_keyword}} /
[1] ALI A, IJAZ M, KHAN Y R, et al.Role of nanotechnology in animal production and veterinary medicine [J].Trop Anim Health Prod, 2021, 53(5): 508.
[2] KAWABATA Y, WADA K, NAKATANI M, et al. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications [J].Int J Pharm, 2011, 420(1): 1-10.
[3] CHEN F, ZHANG Z R, YUAN F, et al.In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery [J].Int J Pharm, 2008, 349(1/2): 226-233.
[4] SHAN W, ZHU X, LIU M, et al.Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by selfassembled nanoparticles for oral delivery of insulin [J]. ACS Nano, 2015, 9(3): 2345-2356.
[5] CONE R A.Barrier properties of mucus [J].Adv Drug Deliv Rev, 2009, 61(2): 75-85.
[6] WANG J, KONG M, ZHOU Z, et al.Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery [J]. Carbohydr Polym, 2017, 157: 596-602.
[7] BOCSIK A, GRÓF I, KISS L, et al.Dual action of the PN159/KLAL/MAP peptide: increase of drug penetration across caco-2 intestinal barrier model by modulation of tight junctions and plasma membrane permeability [J]. Pharmaceutics, 2019, 11(2): 73.
[8] GEHART H, CLEVERS H.Tales from the crypt: new insights into intestinal stem cells [J].Nat Rev Gastroenterol Hepatol, 2019, 16(1): 19-34.
[9] 王秀坤, 李家实.细胞信号转导与中药机理研究[J].世 界科学技术, 2003, (6): 46-50.
[10] HYUN H, PARK J, WILLIS K, et al.Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solidtumors [J].Biomaterials, 2018, 180: 206-224.
[11] LIVERSIDGE G G, CONZENTINO P.Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats [J].Int J Pharm, 1995, 125(2): 309-313.
[12] MOU D S, CHEN H B, WAN J L, et al.Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility [J].Int J Pharm, 2011, 413(1/2): 237-244.
[13] AHUJA B K, JENA S K, PAIDI S K, et al.Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension [J].Int J Pharm, 2015, 478(2): 540-552.
[14] YI Y N, TU L X, HU K L, et al.The construction of puerarin nanocrystals and its pharmacokinetic and in vivoin vitro correlation(IVIVC) studies on beagle dog [J]. Colloids Surf B Biointerfaces, 2015, 133: 164-170.
[15] MADHU.Difference between polymer and macromolecule [EB/OL].(2015-1-21) [2022-03-29].https://www. differencebetween.com/difference-between-polymer-andvs- macromolecule/.
[16] YU M R, YANG Y W, ZHU C L, et al.Advances in the transepithelial transport of nanoparticles [J].Drug Discov Today, 2016, 21(7): 1155-1161.
[17] BEZRODNYKH E A, ANTONOV Y A, BEREZIN B B, et al.Molecular features of the interaction and antimicrobial activity of chitosan in a solution containing sodium dodecyl sulfate [J].Carbohydr Polym, 2021, 270: 118352.
[18] GRENHA A.Chitosan nanoparticles: a survey of preparation methods [J].J Drug Target, 2012, 20(4): 291- 300.
[19] SUBBIAH R, RAMALINGAM P, RAMASUNDARAM S, et al.N,N,N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen [J].Carbohydr Polym, 2012, 89(4): 1289-1297.
[20] ZENG H H, ZHU X, TIAN Q K, et al.In vivo antitumor effects of carboxymethyl chitosan-conjugated triptolide after oral administration [J].Drug Deliv, 2020, 27(1): 848- 854.
[21] FAN W W, XIA D N, ZHU Q L, et al.Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery [J].Biomaterials, 2018, 151: 13-23.
[22] SAKLOETSAKUN D, PERERA G, HOMBACH J, et al. The impact of vehicles on the mucoadhesive properties of orally administrated nanoparticles: a case study with chitosan- 4-thiobutylamidine conjugate [J].AAPS PharmSciTech, 2010, 11(3): 1185-1192.
[23] A M P O N S A H - E FA H K K , D E M E L E R B , SURYANARAYANAN R.C h a r a c t e r i z i n g d r u g - polymer interactions in aqueous solution with analytical ultracentrifugation [J].Mol Pharm, 2021, 18(1): 246- 256.
[24] BABU N J, NANGIA A.Solubility advantage of amorphous drugs and pharmaceutical cocrystals [J].Crys Growth Des, 2011, 11(7): 2662-2679.
[25] KOSINSKI A M, BRUGNANO J L, SEAL B L, et al. Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system [J].Biomatter, 2012, 2(4): 195-201.
[26] TIMMINS P, PYGALL S R, MELIA C D.Hydrophilic matrix tablets for oral controlled release [M].New York: Springer, 2014. [27] MAŠKOVÁ E, KUBOVÁ K, RAIMI-ABRAHAM B T, et al.Hypromellose-a traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery [J].J Control Release, 2020, 324: 695-727.
[28] DOLENC A, KRISTL J, BAUMGARTNER S, et al. Advantages of celecoxib nanosuspension formulation and transformation into tablets [J].Int J Pharm, 2009, 376(1/2): 204-212.
[29] SEEDHER N, BHATIA S.Solubility enhancement of Cox-2 inhibitors using various solvent systems [J].AAPS PharmSciTech, 2003, 4(3): E33.
[30] HOMAYOUNI A, SADEGHI F, VARSHOSAZ J, et al. Comparing various techniques to produce micro/nanoparticles for enhancing the dissolution of celecoxib containing PVP [J].Eur J Pharm Biopharm, 2014, 88(1): 261-274.
[31] SHINDE U A, JOSHI P N, JAIN D D, et al.Preparation and evaluation of N-trimethyl chitosan nanoparticles of flurbiprofen for ocular delivery [J].Curr Eye Res, 2019, 44(5): 575-582.
[32] RAMALINGAM P, KO Y T.Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations [J].Pharm Res, 2015, 32(2): 389-402.
[33] LIU H L , TU L X, ZHOU Y X, e t a l.Improved bioavailability and antitumor effect of docetaxel by TPGS modified proniosomes: in vitro and in vivo evaluations [J]. Sci Rep, 2017, 7(1): 43372.
[34] ZHAO J, FENG S S.Effects of PEG tethering chain length of vitamin E TPGS with a Herceptin-functionalized nanoparticle formulation for targeted delivery of anticancer drugs [J].Biomaterials, 2014, 35(10): 3340-3347.
[35] LU J Q, HUANG Y X, ZHAO W C, et al.Design and characterization of PEG-derivatized vitamin E as a nanomicellar formulation for delivery of paclitaxel [J].Mol Pharm, 2013, 10(8): 2880-2890.
[36] TANAKA K, KANAZAWA T, SHIBATA Y, et al. Development of cell-penetrating peptide-modified MPEGPCL diblock copolymeric nanoparticles for systemic gene delivery [J].Int J Pharm, 2010, 396(1/2): 229-238.
[37] PENG W, JIANG X Y, ZHU Y, et al.Oral delivery of capsaicin using MPEG-PCL nanoparticles [J].Acta Pharmacol Sin, 2015, 36(1): 139-148.
[38] RAMIREZ J C, HERRERA-ORDONEZ J, GONZALEZ V A.Kinetics of styrene minisuspension polymerization using a mixture PVA-SDS as stabilizer [J].Polymer, 2006, 47(10): 3336-3343.
[39] RAMIREZ J C, FLORES-VILLASEOR S E, VARGASREYES E, et al.Preparation of PDLLA and PLGA nanoparticles stabilized with PVA and a PVA-SDS mixture: Studies on particle size, degradation and drug release [J].J Drug Deliv Sci Tec, 2020, 60: 101907. [40] JAIN A K, GOYAL A K, MISHRA N, et al.PEG-PLAPEG block copolymeric nanoparticles for oral immunization against hepatitis B [J].Int J Pharm, 2010, 387(1/2): 253- 262.
[41] JEAN-MICHEL R, PATRICE H, XAVIER B.Assessment of PEG on polymeric particles surface, a key step in drug carrier translation [J].J Control Release, 2014, 185: 71-87.
[42] PALACIO J, AGUDELO N A, LOPEZ B L.PLA/Pluronic® nanoparticles as potential oral delivery systems: preparation, colloidal and chemical stability, and loading capacity [J].J Appl Polym Sci, 2016, 133(33): 43828.
[43] TOBÍO M, SÁNCHEZ A, VILA A, et al.The role of PEG on the stability in digestive fluids and in vivo fate of PEGPLA nanoparticles following oral administration [J]. Colloids Surf B Biointerfaces, 2000, 18(3/4): 315-323.
[44] SMART J D.The basics and underlying mechanisms of mucoadhesion [J].Adv Drug Deliv Rev, 2005, 57(11): 1556-1568. [45] LIU J L, TU L X, CHENG M, et al.Mechanisms for oral absorption enhancement of drugs by nanocrystals [J].J Drug Deliv Sci Tec, 2020, 56: 101607.
[46] DANHIER F, ANSORENA E, SILVA J M, et al.PLGAbased nanoparticles: an overview of biomedical applications [J].J Control Release, 2012, 161(2): 505-522.
[47] IRANPOUR S, NEJATI V, DELIREZH N, et al. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid(PLGA) nanoparticle encapsulated tumor antigens [J]. J Exp Clin Cancer Res, 2016, 35(1): 168.
[48] SILVA-ABREU M, CALPENA A C, ESPINA M, et al. Optimization, biopharmaceutical profile and therapeutic efficacy of pioglitazone-loaded PLGA-PEG nanospheres as a novel strategy for ocular inflammatory disorders [J].Pharm Res, 2018, 35(1): 11.
[49] SAKUMA S, SUDO R, SUZUKI N, et al.Behavior of mucoadhesive nanoparticles having hydrophilic polymeric chains in the intestine [J].J Control Release, 2002, 81(3): 281-290.
[50] PORNPITCHANARONG C , ROJANARATA T, OPANASOPIT P, et al.Maleimide-functionalized carboxymethyl cellulose: a novel mucoadhesive polymer for transmucosal drug delivery [J].Carbohydr Polym, 2022, 288: 119368.
[51] ISHIZU K, YAMASHITA M, ICHIMURA A.Microsphere synthesis by emulsion copolymerization of methyl methacrylate with poly(acrylic acid) macromonomers [J]. Polymer, 1997, 38(21): 5471-5474.
[52] LEE C F.The effect of aqueous medium contains poly(acrylic acid) on the morphology of composite polymer particle produced by two stages soapless seeded emulsion polymerization [J].Polymer, 2002, 43(21): 5763-5769.
[53] CUI F Y, FENG Q , YIN C H.P r epar a t ion and characterization of mucoadhesive polymer-coated nanoparticles [J].Int J Pharm, 2006, 316(1/2): 154-161.
[54] LI X P, UEHARA S, SAWANGRAT K, et al.Improvement of intestinal absorption of curcumin by cyclodextrins and the mechanisms underlying absorption enhancement [J].Int J Pharm, 2018, 535(1/2): 340-349.
[55] LIU J L, SUN Y B, CHENG M, et al.Improving oral bioavailability of luteolin nanocrystals by surface modification of sodium dodecyl sulfate [J].AAPS PharmSciTech, 2021, 22(3): 133.
[56] GAO Y, SUN Y, LIAO G L, et al.DSPE-PEG polymers for improving pulmonary absorption of poorly absorbed macromolecules in rats and relative mechanism [J].Drug Dev Ind Pharm, 2021, 47(2): 337-346.
[57] TEKCHANDANI P, KURMI B D, PALIWAL R, et al. Galactosylated TPGS micelles for docetaxel targeting to hepatic carcinoma: development, characterization, and biodistribution study [J].AAPS PharmSciTech, 2020, 21(5): 174.
[58] NA Y G, PHAM T M A, BYEON J J, et al.Development and evaluation of TPGS/PVA-based nanosuspension for enhancing dissolution and oral bioavailability of ticagrelor [J].Int J Pharm, 2020, 581: 119287.
[59] LIU Y, JIANG Z F, HOU X F, et al.Functional lipid polymeric nanoparticles for oral drug delivery: rapid mucus penetration and improved cell entry and cellular transport [J].Nanomedicine, 2019, 21: 102075.
[60] PIETRA M, GALIAZZO G, BRESCIANI F, et al. Evaluation of prognostic factors, including duodenal P-glycoprotein expression, in canine chronic enteropathy [J].Animals(Basel), 2021, 11(8): 2315.
[61] ZHU H J , WANG J S, MARKOWITZ J S, e t al. Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana [J].J Pharmacol Exp Ther, 2006, 317(2): 850-857.
[62] 张会杰, 熊玉卿.P -糖蛋白药物外排作用的研究进展 [J].中国临床药理学志, 2004, (4): 317-320.
[63] WEMPE M F, WRIGHT C, LITTLE J L, et al.Inhibiting efflux with novel non-ionic surfactants: rational design based on vitamin E TPGS [J].Int J Pharm, 2009, 370(1/2): 93- 102.
[64] BAEK J S, CHO C W.2-Hydroxypropyl-β-cyclodextrinmodified SLN of paclitaxel for overcoming P-glycoprotein function in multidrug-resistant breast cancer cells [J].J Pharm Pharm, 2012, 65(1): 72-78.
[65] VASCONCELOS T, MARQUES S, SARMENTO B.The biopharmaceutical classification system of excipients [J]. Ther Deliv, 2017, 8(2): 65-78.
[66] RUIZ-PICAZO A, LOZOYA-AGULLO I, GONZÁLEZÁLVAREZ I, et al.Effect of excipients on oral absorption process according to the different gastrointestinal segments [J].Expert Opin Drug Deliv, 2021, 18(8): 1005-1024.
[67] YU S W, XU X L, FENG J F, et al.Chitosan and chitosan coating nanoparticles for the treatment of brain disease [J]. Int J Pharm, 2019, 560: 282-293.
[68] MO Z J, BAN J F, ZHANG Y, et al.Nanostructured lipid carriers-based thermosensitive eye drops for enhanced, sustained delivery of dexamethasone [J].Nanomedicine, 2018, 13(11): 1239-1253.
[69] MUNISWAMY V J, RAVAL N, GONDALIYA P, et al. ‘Dendrimer-Cationized-Albumin’ encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin [J].Int J Pharm, 2019, 555: 77- 99.
/
〈 |
|
〉 |