建立了暴露于空气 - 液体界面 (ALI) 培养模式下的人肺泡Ⅱ型上皮细胞系 A549- 炎症损伤模型,采用脂多糖 (LPS) 作为炎性刺激因子,探讨其在不同质量浓度 (0、10、30、50 μg/ml) 和不同作用时间 (1、3、5 h) 下对白细胞介素 (IL-1β、 IL-6、IL-8、IL-18)、肿瘤坏死因子 -α、转化生长因子 -β 基因表达的影响。结果显示,LPS 作用 1 h 时,除 IL-6 外,其余各剂量组均诱导上述炎症因子表达增加。炎症因子的表达与 LPS 的质量浓度无关,与其作用时间有关,为确定 ALI 培养炎症细胞模型的最佳质量浓度和时间提供了试验基础。
Abstract
A human type Ⅱ alveolar epithelial cell line A549-inflammation injury model exposed to air-liquid interface(ALI) cultivation mode was established using lipopolysaccharide(LPS) as an inflammatory stimulator. The effects of different mass concentrations(0, 10, 30, 50 μg/ml) and durations(1, 3, 5 h) of LPS on the gene expression of interleukins(IL-1β, IL-6, IL-8, IL-18), tumor necrosis factor-α and transorming growth factor-β were investigated. The results showed that the expressions of the above-mentioned inflammatory factors were increased in all dose groups except IL-6 when LPS acted for 1 h. The expressions of inflammatory factors were independent of the mass concentration of LPS, but related to its action time, which provided an experimental basis for determining the optimal concentration and time of ALI cultured inflammatory cell model.
关键词
A549 细胞 /
空气 - 液体界面培养 /
肺部炎症模型 /
脂多糖
{{custom_keyword}} /
Key words
A549 cell /
air-liquid interface culture /
pulmonary inflammation model /
lipopolysaccharide
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] UPADHYAY S, PALMBERG L.Air-liquid interface: relevant in vitro models for investigating air pollutantinduced pulmonary toxicity [J].Toxicol Sci, 2018, 164(1): 21-30.
[2] S?RLI J B, HANSEN J S, N?RGAARD A W, et al.An in vitro method for predicting inhalation toxicity of impregnation spray products [J].Altex, 2015, 32(2): 101-111.
[3] 冀晓丽, 胡 玥, 盛云华, 等.气液界面培养小鼠气管上皮细胞模型构建[J].中国药理学通报, 2021, 37(2): 282-288.
[4] 胡 玥, 冯红敏, 盛云华, 等.雾化丙三醇气液界面云暴露对人肺上皮细胞的毒性[J].中国药理学通报, 2020, 36(5): 640-645.
[5] 陈祝桂, 彭志勇, 张智豪, 等.不同浓度脂多糖对脓毒症急性肺损伤肺上皮细胞坏死性凋亡和线粒体自噬的影响[J].中华实用诊断与治疗杂志, 2020, 34(4): 330-333.
[6] LACROIX G, KOCH W, RITTER D, et al.Air-liquid interface in vitro models for respiratory toxicology research: consensus workshop and recommendations [J].Appl In Vitro Toxicol, 2018, 4(2): 91-106.
[7] S?RLI J B, WANG Y S, SILVA E D, et al.Prediction of acute inhalation toxicity using in vitro lung surfactant inhibition [J].Altex, 2018, 35(1): 26-36.
[8] SAKAGAMI M.In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery [J].Adv Drug Deliever Rev, 2006, 58(9/10): 1030-1060.
[9] LORET T, PEYRET E, DUBREUIL M, et al.Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions [J].Part Fibre Toxicol, 2016, 13(1): 58.
[10] FIZESAN I, CAMBIER S, MOSCHINI E, et al.In vitroexposure of a 3D-tetraculture representative for the alveolar barrier at the air-liquid interface to silver particles and nanowires [J].Part Fibre Toxicol, 2019, 16(1): 14.
[11] 尤学红, 郭媛媛, 刘晓明, 等.脂多糖刺激巨噬细胞获得的外泌体促进TGF-β1诱导的人A549细胞上皮间质转化[J].细胞与分子免疫学杂志, 2019, 35(8): 673-681.
[12] LENZ A G, KARG E, BRENDEL E, et al.Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air-liquid interface: a comparison with conventional, submerged cell-culture conditions [J].Biomed Res Int, 2013, 2013: 652632.
[13] 宋 颖, 吴露露.青蒿素通过RAI14抑制脂多糖诱导的肺上皮细胞炎症效应[J].江苏科技信息, 2019, 36(30): 36-39.
[14] 张腾松, 孙 乔, 邸 洁, 等.脂多糖处理对A549细胞炎性因子基因表达的影响[J].中华危重病急救医学, 2019, 31(4): 464-467.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}