采集3 家无菌制药企业的核心生产环境(A/B/C 级洁净车间) 的沉降菌、浮游菌和人员及设备表面菌,通过生化鉴定、 16S rRNA 序列分析和基因间隔序列(ITS) 鉴定,发现革兰阳性菌在微生物中占比最高,其中葡萄球菌属、微球菌、库克菌和芽孢杆菌等凝聚酶阴性葡萄球菌(CoNS) 属于优势菌种。CoNS 作为主要的污染微生物,通过选取6 个看家基因对其进行多位点序列分型(multi-locus sequence typing,MLST),形成菌株聚类关系图。药敏试验表明,20 株CoNS 对庆大霉素、万古霉素、替加环素等7 种抗菌药的敏感率为100%,对头孢西丁、青霉素、红霉素等11 种抗菌药的敏感率为25%~ 95%,有2 株沃氏葡萄球菌分别对7 种抗菌药表现出耐受性。企业应持续进行环境监测,建立微生物菌种数据库,为微生物的溯源和污染控制提供科学依据。
Abstract
Settling bacteria, planktonic bacteria and bacteria on the surface of personnel and equipment in the core production environment of three sterile pharmaceutical companies(A/B/C grade clean room) were collected for biochemical identification, 16S rRNA sequence analysis, and internal transcribed spacer(ITS) identification. The results showed that gram-positive bacteria accounted for the highest proportion of microorganisms, and coagulasenegative Staphylococci(CoNS) such as Staphylococcus, Micrococcus, Kocuria and Bacillus were dominant species. As the main contaminating microorganisms, CoNS were used to select six house-keeping genes for multi-locus sequence typing(MLST) to form a strain clustering relationship map. The drug sensitivity test showed that the sensitivity of twenty CoNS strains to seven antibiotics(such as gentamicin, vancomycin and tigecycline) was 100%. The sensitivity to eleven antibiotics(such as cefoxitin, penicillin and erythromycin) was 25% - 95%. And there were two strains of Staphylococcus warneri that were resistant to seven antibiotics. Enterprises should continue to conduct environmental monitoring and establish a microbial strain database to provide scientific basis for microbial traceability and pollution control.
关键词
洁净车间 /
微生物污染 /
菌种鉴定 /
多位点序列分型 /
耐药谱
{{custom_keyword}} /
Key words
clean room /
microorganism contamination /
species identification /
multi-locus sequence typing /
antibiotic resistance profile
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 何国强, 王 玮, 张贵良.制药洁净车间微生物控制[M].北京: 北京工业出版社, 2013: 45.
[2] 潘友文.现代医药工业微生物实验室质量管理与验证技术[M].北京: 中国协和医科大学出版社, 2004: 66.
[3] SUTTON S, JIMENEZ L.A review of reported recalls involving microbiological control 2004-2011 with emphasis on FDA considerations of “objectionable organisms” [J].Am pharm Rev, 2012, 15(1): 42-57.
[4] 陈西勇, 于淑渤, 梁 宏.无菌药品生产发生微生物污染的因素分析(上)[J].首都医药, 2009, 16(6): 23-25.
[5] 张文婷, 刘绪平, 熊 骏, 等.无菌制剂车间环境微生物污染情况监测[J].药物分析杂志, 2019, 39(10): 1895-1901.
[6] 宋明辉, 李琼琼, 秦 峰, 等.无菌制药企业生产环境凝固酶阴性葡萄球菌多位点序列分型方法的建立[J].中国医药工业杂志, 2019, 50(5): 553-558.
[7] 范一灵, 冯 震, 钟 玮, 等.无菌药品生产企业核心区微生物污染调查与分析[J].中国药事, 2014, 28(6): 586-590.
[8] 刘亚茹, 余 萌, 肖 璜, 等.五家无菌制药企业洁净区微生物群落分析[J].中国药事, 2019, 33(7): 586-590.
[9] 徐全华, 王 羿.无菌药品生产环境微生物的鉴定和种群分析[J].中国药事, 2019, 33(12): 1411-1417.
[10] ASHOUR M S, MANSY M S, EISSA M E.Microbiological environmental monitoring in sterile pharmaceutical facility
[J].Egypt Acad J Biolog Sci, 2011, 3(1): 63-74.
[11] SANDLE T.A review of cleanroom microflora: type,trends, and patterns [J].PDA J Pharm Sci Technol, 2011,65(4): 392-403.
[12] PARK H K, HAN J H, JOUNG Y, et al.Bacterial diversity in the indoor air of sterile pharmaceutical environment [J].
J Appl Micro, 2014, 116(3): 718-727.
[13] 徐玉党.室内污染控制与洁净技术[M].重庆: 重庆大学出版社, 2006: 25.
[14] DAO H, LAKHANI P, POLICE A, et al.Microbial stability of sterile pharmaceutical and cosmetic products [J].AAPS
Pharm Sci Tech, 2018, 19(1): 60-78.
[15] 费明明, 刘 宝.凝固酶阴性葡萄球菌耐药机制的研究进展[J].临床肺科杂志, 2012, 17(1): 120-121.
[16] 王锦萍, 蔡常辉, 梁连辉, 等.肺结核并发肺部感染凝固酶阴性葡萄球菌的耐药性及耐药基因mecA分析[J].国际检验医学杂志, 2018, 39(5): 623-625.
[17] 陈瑞珊, 王 岩, 海 冬, 等.唐山地区医院儿科患者感染耐甲氧西林凝固酶阴性葡萄球菌耐药基因检测及耐药性分析[J].中国病原生物学杂志, 2015, 10(5): 454-458.
[18] 周小梅, 游明园, 廖小平, 等.292株凝固酶阴性葡萄球菌的临床分布及耐药性[J].中国消毒学杂志, 2016, 3(33):255-257.
[19] 郑金旺.2020版欧盟GMP附录1草案的主要变化解读及对国内无菌产品生产的影响分析[J].化工与医药工程,2020, 41(2): 65-70.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}