人诱导多能干细胞分化的心肌细胞在疾病模型和药物筛选中的应用

邢红艳1,2,张艺哲1,2,王美婷1,2,赵 琪1,2,汪溪洁1,2*

PDF(4232 KB)
主办:上海医药工业研究院
   中国药学会
   中国化学制药工业协会
ISSN 1001-8255   CN 31-1243/R   ZYGZEA
PDF(4232 KB)
中国医药工业杂志 ›› 2019, Vol. 50 ›› Issue (08) : 834-841. DOI: 10.16522/j.cnki.cjph.2019.08.002
专论与综述 Perspectives & Review

人诱导多能干细胞分化的心肌细胞在疾病模型和药物筛选中的应用

作者信息 +

Applications of Cardiomyocytes Derived from Human-induced Pluripotent Stem Cells in Disease Model and Drug Screening

Author information +
History +

摘要

在寻求改进心脏疾病表型建模方法和准确筛选潜在治疗化合物的药效和毒性的方法中,人诱导多能干细胞成为促进药物开发和改善疾病建模能力的一个重要工具。它们源自体细胞,又具有增殖分化能力,使其能够开发成个性化的医疗策略和特异性的疾病模型。目前基于人诱导多能干细胞分化的心肌细胞的体外疾病模型已用于药物发现与验证、有效性及安全性评价,对未知的疾病机制的阐明,为开展临床试验奠定了基础。本文主要概述了基于人诱导多能干细胞分化的心肌细胞作为心脏疾病模型的研究进展及其在药物筛选中的应用。

Abstract

Human-induced pluripotent stem cells (hiPSCs) have become an important tool for promoting disease modeling and drug development in the search for ways to improve phenotypic modeling of heart disease and accurately screen the efficacy and toxicity of potentially therapeutic compounds. And hiPSCs are derived from somatic cells and have the ability of differentiation and proliferation that make them possible to develop personalized medical strategies and disease-specific models. Currently, the in vitro disease models based on cardiomyocytes derived from hiPSCs have been used for drug discovery and validation, efficacy and safety evaluation, elucidation of the unknown mechanism of disease, which provide the basis to conduct clinical trials. The progress of cardiomyocytes derived from hiPSCs as cardiac disease models and their applications to drug screening is summarized in this paper.

关键词

人诱导多能干细胞 / 心肌细胞 / 疾病模型 / 药物筛选

Key words

human induced pluripotent stem cell (hiPSC) / cardiomyocyte / disease model / drug screening

引用本文

导出引用
邢红艳1,2,张艺哲1,2,王美婷1,2,赵 琪1,2,汪溪洁1,2*. 人诱导多能干细胞分化的心肌细胞在疾病模型和药物筛选中的应用. 中国医药工业杂志. 2019, 50(08): 834-841 https://doi.org/10.16522/j.cnki.cjph.2019.08.002
XING Hongyan1,2, ZHANG Yizhe1,2, WANG Meiting1,2, ZHAO Qi1,2, WANG Xijie1,2*. Applications of Cardiomyocytes Derived from Human-induced Pluripotent Stem Cells in Disease Model and Drug Screening. Chinese Journal of Pharmaceuticals. 2019, 50(08): 834-841 https://doi.org/10.16522/j.cnki.cjph.2019.08.002

参考文献

[1] TAKAHASHI K, YAMANAKA S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors [J].Cell, 2006, 126(4): 663-676.
[2] TAKAHASHI K, TANABE K, OHNUKI M, et al.Induction of pluripotent stem cells from adult human fibroblasts by defined factors [J].Cell, 2007, 131(5): 861-872.
[3] CAI J, LI W, SU H F, et al.Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells [J].J Biol Chem,2010, 285(15): 11227-11234.
[4] WURIYANGHAI Y, MAKIYAMA T, SASAKI K, et al.Complex aberrant splicing in the induced pluripotent stem cell-derived cardiomyocytes from a patient with long QT syndrome carrying KCNQ1-A344Aspl mutation [J].Heart Rhythm, 2018, 15(10): 1566-1574.
[5] VERDI J, TAN A, SHOAE-HASSANI A, et al.Endometrial stem cells in regenerative medicine [J].J Biol Eng, 2014,8: 20.
[6] JOUNI M, SI-TAYEB K, ES-SALAH-LAMOUREUX Z, et al.Toward personalized medicine: Using cardiomyocytes differentiated from urine-derived pluripotent stem cells to recapitulate electrophysiological characteristics of type 2 long QT syndrome [J].J Am Heart Assoc, 2015, 4(9):e002159.
[7] MALIK N, RAO M S.A review of the methods for human iPSC derivation [J].Methods Mol Biol, 2013, 997: 23-33.
[8] RAAB S, KLINGENSTEIN M, LIEBAU S, et al.A comparative view on human somatic cell sources for iPSC generation [J].Stem Cells Int, 2014, 2014: 768391.
[9] SOMMER C A, MOSTOSLAVSKY G.The evolving field of induced pluripotency: recent progress and future challenges [J].J Cell Physiol, 2013, 228(2): 267-275.
[10] MOON S H, BAE D, JUNG T H, et al.From bench to market: Preparing human pluripotent stem cells derived cardiomyocytes for various applications [J].Int J Stem Cells, 2017, 10(1): 1-11.
[11] MUMMERY C L, WARD D, PASSIER R.Differentiation of human embryonic stem cells to cardiomyocytes by coculture with endoderm in serum-free medium [J].Curr Protoc Stem Cell Biol, 2007, 2(1): 1F.2.1-1F.2.14.
[12] SCHWARTZ P J.Practical issues in the management of the long QT syndrome: focus on diagnosis and therapy [J].Swiss Med Wkly, 2013, 143: w13843.
[13] CHAI S, WAN X, RAMIREZ-NAVARRO A, et al.Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity [J].J Clin Invest, 2018,128(3): 1043-1056.
[14] MALAN D, ZHANG M, STALLMEYER B, et al.Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction [J].Basic Res Cardiol,2016, 111: 14.
[15] YAZAWA M, DOLMETSCH R E.Modeling Timothy syndrome with iPS cells [J].J Cardiovasc Transl Res,2013, 6(1): 1-9.
[16] YAMAMOTO Y, MAKIYAMA T, HARITA T, et al.Allelespecific ablation rescues electrophysiological abnormalities in a human iPS cell model of long-QT syndrome with a CALM2 mutation [J].Hum Mol Genet, 2017, 26(9): 1670-1677.
[17] JUNG C B, MORETTI A, MEDEROS Y SCHNITZLER M, et al.Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia [J].EMBO Mol Med,2012, 4(3): 180-191.
[18] MAIZELS L, HUBER I, ARBEL G, et al.Patient-specific drug screening using a human induced pluripotent stem cell model of catecholaminergic polymorphic ventricular tachycardia type 2 [J].Circ Arrhythm Electrophysiol, 2017,10(6): 004725.
[19] HOUSER S R, MARGULIES K B, MURPHY A M, et al.Animal models of heart failure: a scientific statement from the American Heart Association [J].Circ Res, 2012;111(1): 131-150.
[20] LIANG P, SALLAM K, WU H, et al.Patient-specific and genome-edited induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of Brugada syndrome [J].J Am Coll Cardiol, 2016, 68(19): 2086-2096.
[21] 李裕舒, 朱 峰.结构性心脏病的介入治疗进展[J].临床心血管病杂志, 2017, 33(10): 928-930.
[22] ESCHENHAGEN T, CARRIER L.Cardiomyopathy phenotypes in human-induced pluripotent stem cell-derived cardiomyocytes-a systematic review [J].Pflugers Arch,2019, 471(5): 755-768
[23] WANG L, KIM K, PARIKH S, et al.Hypertrophic cardiomyopathy-linked mutation in troponin T causes myofibrillar disarray and pro-arrhythmic action potential changes in human iPSC cardiomyocytes [J].J Mol Cell Cardiol, 2018, 114: 320-327.
[24] SCHICK R, MEKIES L N, SHEMER Y, et al.Functional abnormalities in induced Pluripotent Stem Cell-derived cardiomyocytes generated from titin-mutated patients with dilated cardiomyopathy [J].PLoS One, 2018, 13(11):e0207548.
[25] LIN B, LI Y, HAN L, et al.Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy [J].Dis Model Mech, 2015,8(5): 457-466.
[26] HUANG H P, CHEN P H, HWU W L, et al.Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification[J].Hum Mol Genet, 2011, 20(24): 4851-4864.
[27] HICK A, WATTENHOFER-DONZé M, CHINTAWAR S,et al.Neurons and cardiomyocytes derived from induced pluripotent stem cells as a model for mitochondrial defects in Friedreich's ataxia [J].Dis Model Mech, 2013, 6(3): 608-621.
[28] WANG G, MCCAIN M L, YANG L, et al.Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies[J].Nat Med, 2014, 20(6): 616-623.
[29] CALKINS H.Arrhythmogenic right ventricular dysplasia/cardiomyopathy-three decades of progress [J].Circ J, 2015,79(5): 901-913.
[30] KRAMER J, OBEJERO-PAZ CA, MYATT G, et al.MICE models: superior to the HERG model in predicting Torsade de Pointes [J].Sci Rep, 2013, 3: 2100.
[31] MULDER P, DE KORTE T, DRAGICEVIC E, et al.Predicting cardiac safety using human induced pluripotent stem cell-derived cardiomyocytes combined with multielectrode array (MEA) technology: A conference report[J].J Pharmacol Toxicol Methods, 2018, 91: 36-42.
[32] BLINOVA K, STOHLMAN J, VICENTE J, et al.Comprehensive translational assessment of human-induced pluripotent stem cell derived cardiomyocytes for evaluating drug-induced arrhythmias [J].Toxicol Sci, 2017, 155(1):234-247.
[33] MATSA E, RAJAMOHAN D, DICK E, et al.Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation [J].Eur Heart J, 2011, 32(8): 952-962.
[34] TERRENOIRE C, WANG K, TUNG K W, et al.Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics [J].J Gen Physiol, 2013, 141(1): 61-72.
[35] PENTTINEN K, SWAN H, VANNINEN S, et al.Correction: antiarrhythmic effects of dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models [J].PLoS One, 2015, 10(7): e0134746.
[36] SUN N, YAZAWA M, LIU J, et al.Patient-specific induced pluripotent stem cells as a model for familial dilated
cardiomyopathy [J].Sci Transl Med, 2012, 4(130):130ra47.
[37] LIANG P, LAN F, LEE A S, et al.Drug screening using a library of human induced pluripotent stem cellderived
cardiomyocytes reveals disease-specific patterns of cardiotoxicity [J].Circulation, 2013, 127(16): 1677-1691.
[38] BURRIDGE PW, LI YF, MATSA E, et al.Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity [J].Nat Med, 2016, 22(5): 547-556.
[39] SHARMA A, BURRIDGE P W, MCKEITHAN W L, et al.High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells[J].Sci Transl Med, 2017, 9(377): eaaf2584.

基金

上海市科委“ 科技创新行动计划” 项目 (17140900700)、十三五重大专项(2018ZX09201017-008)

PDF(4232 KB)

298

Accesses

0

Citation

Detail

段落导航
相关文章

/