以小鼠高血脂症为模型,筛选两色金鸡菊提取物,得到能显著降低血清中甘油三酯(TG) 和低密度脂蛋白(LDL-C)浓度的活性部位。对该活性部位进行血清药物化学研究,通过分析比较活性部位和含药血清样品,检测到含药血清中有12 个入血成分,其中6 个为代谢产物,6 个为原型成分。主要入血原型成分为异奥卡宁-7-O-β-D- 吡喃葡萄糖苷(1)、(Z)-6,7,3',4'- 四羟基橙酮-6-O-β-D- 吡喃葡萄糖苷(3) 和马里苷(4)。经金黄地鼠高血脂模型筛选,结果显示1 能显著降低动物血清中的TG、总胆固醇(CHOL) 和LDL-C 含量,4 能显著提升高密度脂蛋白(HDL-C) 水平。研究表明二氢黄酮类和查尔酮类化合物是两色金鸡菊中的降血脂活性成分。
Abstract
A hyperlipid diet-induced hyperlipidemic mice model was used to investigate the effects of Coreopsis tinctoria extract (CTE) on hyperlipidemia. It was observed that CTE could significantly decrease the triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels. The chemical analysis of CTE and medicated serum samples, which were obtained from the rats administered with the bioactive component extract orally, was carried out in a HPLC system. Twelve transitional constituents (6 metabolites and 6 prototype constituents) into blood were detected and the main prototype constituents with anti-hyperlipidemic effects were isookanin-7-O-β-D-glucopyranoside (1), (Z)-6-O-β-D-glucopyranosyl-6,7,3',4'-tetrahydroxyaurone (3) and marein (4). After screening in hyperlipidemic golden hamster model, the results showed that compound 1 could significantly decrease the TG, serum total cholesterol (CHOL) and LDL-C levels in golden hamster serum, while compound 4 could significantly increase the high-density lipoprotein cholesterol (HDL-C) level. These findings suggested that flavanone and chalcone compounds were the antihyperlipidemic bioactive components of CTE.
关键词
两色金鸡菊 /
高血脂症 /
血清药物化学 /
活性成分
{{custom_keyword}} /
Key words
Coreopsis tinctoria /
hyperlipidemia /
serum pharmacochemistry /
bioactive component
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 梁淑红, 庞市宾, 刘晓燕, 等. 金鸡菊提取物降血脂作用的研究[J]. 中国实验方剂学杂志, 2010, 16(8): 234—235.
[2] 刘伟新, 邓继华, 徐 鸿. 一种金鸡菊花的生药学研究[J].中国民族医药杂志, 2009, 15(1): 24—25.
[3] Foster S, Duke JA. A field guide to medicinal plants: eastern and central north America [M]. Boston: Houghton Mifflin Co., 1990: 386. [4] Sun YH, Zhao J, Jin HT, et al. Vasorelaxant effects of the extracts and some flavonoids from the buds of Coreopsis tinctoria [J]. Pharm Biol, 2013, 51(9): 1158—1164.
[5] 刘金俊, 杨印军, 朱寅荻, 等. 两色金鸡菊中1 个新的没药烷型倍半萜类化合物[J]. 中国中药杂志, 2015, 40(11):2132—2137.
[6] Zhang Y, Shi S, Zhao M, et al. Coreosides A-D, C14-polyacetylene glycosides from the capitula of Coreopsis tinctoria and its anti-inflammatory activity against COX-2 [J]. Fitoterapia, 2013, 87(4): 93—97.
[7] 兰 卫, 赵保胜, 李玉清, 等. 昆仑雪菊中多种成分的含量测定[J]. 中国实验方剂学杂志, 2012, 18(10): 101—103.
[8] 王喜军. 中药及中药复方的血清药物化学研究[ J] . 世界科学技术: 中药现代化, 2002, 4(2): 1—4.
[9] 朱丽红. 痰瘀互结型胸痹的实验研究—— 针药结合对高脂血症合并冠心病大鼠模型的作用及机制研究[D] . 合肥: 安徽中医学院硕士学位论文, 2006.
[10] Shimoda H, Seki E, Aitani M. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice [J]. BMC Complement Altern Med, 2006, 17(6): 9—17.
[11] Sung YY, Kim DS, Kim HK. Akebia quinata extract exerts anti-obesity and hypolipidemic effects in high-fat diet-fed mice and 3T3-L1 adipocytes [J]. J Ethnopharmacol, 2015,168(20): 17—24.
[12] 卓幼庆. 调脂药物的使用现状及思考[J]. 西北药学杂志,2003, 18(6): 274—275.
[13] Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor to cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population
based prospective studies [J]. J Cardiovasc Risk, 1996, 3(2): 213—219.
[14] Austin MA, Hokanson JE, Brunzell JD. Characterization of low-density lipoprotein subclasses: methodologic approaches and clinical relevance [J]. Curr Opin Lipidol, 1994, 5(6):395—403.
[15] Enger SC, Hjermann I, Foss OP, et al. High density lipoprotein cholesterol and myocardial infarction or sudden coronary death: a prospective case-control study in middleaged men of the Oslo study [J]. Artery, 1979, 5(2): 170—181.
[16] Shimoda H, Seki E, Aitani M. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice [J]. BMC Complement Altern Med, 2006, 17(6): 9—17.
[17] Sung YY, Kim DS, Kim HK. Akebia quinata extract exerts anti-obesity and hypolipidemic effects in high-fat diet-fed mice and 3T3-L1 adipocytes [J]. J Ethnopharmacol, 2015, 168(20): 17—24.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}