本研究主要考察siRNA 对于逆转P- 糖蛋白介导的肿瘤多药耐药的作用。以MDR1 基因为靶标,在线设计MDR1基因的siRNA 序列并利用生物学软件进行优化,经化学合成后转染入体外培养的乳腺癌耐药细胞系MCF-7/ADR 中,经实时定量荧光PCR 和Western blot 定量分析MDR1 基因的表达,以MTT 法检测转染细胞对多柔比星的敏感性。最终设计并合成了8 条MDR1 基因siRNA 序列,其中4 条能有效抑制MDR1 基因mRNA 的表达。siRNA1 沉默效率最高,可特异性地沉默MDR1 基因,有效逆转乳腺癌细胞的多药耐药性。
Abstract
The effect of siRNA on the reversal of multi-drug resistance of cancer cells which was mediated by P-glycoprotein was investigated. The human MDR1 gene was selected as the target. siRNA candidate sequences were obtained via online design and further optimized by biological software. The chemically synthesized siRNAs were transfected into drug-resistant breast cancer cell line MCF-7/ADR. MDR1 gene expression were quantitatively analyzed by real-time PCR and Western blot, respectively. MTT experiment was carried out to assay the sensitivity of transfected cells to doxorubicin. Ultimately, eight MDR1 gene siRNA sequences were designed and synthesized, of which four sequences could effectively inhibit the expression of MDR1 gene. The siRNA1 had the highest interference efficiency and could specifically silence MDR1 gene, effectively reversing the multi-drug resistance in breast cancer.
关键词
小干扰RNA /
P- 糖蛋白 /
多药耐药 /
乳腺癌 /
基因沉默
{{custom_keyword}} /
Key words
siRNA /
P-glycoprotein /
multi-drug resistance /
breast cancer /
gene silence
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Biedler JL, Riehm H. Cellular resistance to actionmycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies [J]. Cancer Res, 1970, 30(4): 1174—1184.
[2] Piwnica-Worms D, Chiu ML, Budding M, et al. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex [J]. Cancer Res, 1993, 53(5): 977—984.
[3] Seiden MV , Swenerton KD, Matulonis U, et al. A phase Ⅱ study of the MDR inhibitor biricodar (NCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy [J]. Gynecol Oncol, 2002, 86(6): 302—310.
[4] Fi r e A, Xu S, Montgome ry MK, e t al . Pot ent andspecific genetic interference by double-stranded RNA in Caenorhabelitis elegans [J]. Nature, 1988, 391(6669): 806—811.
[5] Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-uncleotide RNA mediate RNA interference in cultured mammalian cells [J]. Nature, 2001, 411(6836): 494—498.
[6] de Fougerolles A, Vornlocher HP, Maraganore J, et al. Interfering with disease: a progress report on siRNA-based therapeutics [J]. Nat Rev Drug Discov, 2007, 6(6): 443— 453.
[7] Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J]. Nature, 2001, 411(6836): 494—498.
[8] Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference [J]. Nat Biotechnol, 2004, 22(3): 326—330.
[9] Sontheimer EJ. Assembly and function of RNA silencing complexes [J]. Nat Rev Mol Cell Biol, 2005, 6(2): 127— 138.
[10] Kretschmer-Kazemi Far R, Sczakiel G. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides [J]. Nucleic Acids Res, 2003, 31(15) : 4417—4424.
[11] Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges [J]. Adv Drug Deliv Rev, 2007, 59(2/3): 75—86.
[12] Luo KQ, Chang DC. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region [J]. Biochem Biophys Res Commun, 2004,
318(1): 303—310.
[13] Vickers TA, Wyatt JR, Freier SM. Effects of RNA secondary structure on cellular antisense activity [J]. Nucleic Acids Res, 2000, 28(6): 1340—1347.
[14] Oh YK, Park TG. siRNA delivery systems for cancer treatment [J]. Adv Drug Deliv Rev, 2009, 61(10): 850— 862.
[15] Du a n Z, Br a k o r a KA, Se i d e n MV. I n h i b i t i o n o f ABCB1(MDR1) and ABCB4(MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells [J]. Mol Cancer Ther, 2004, 3(7): 833—838.
[16] Nieth C, Priebsch A, Stege A, et al. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi) [J]. FEBS Lett, 2003, 545(2/3): 144— 150.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
河北省应用基础研究计划重点基础研究项目(12966417D)、河北省自然科学基金(H2012206039)
{{custom_fund}}