Study on the “Composition-structure-function” Relationship of Nanoliposomal Drugs

WEI Xiaohui, XU Yuhong

PDF(6908 KB)
主办:上海医药工业研究院
   中国药学会
   中国化学制药工业协会
ISSN 1001-8255   CN 31-1243/R   ZYGZEA
PDF(6908 KB)
Chinese Journal of Pharmaceuticals ›› 2019, Vol. 50 ›› Issue (10) : 1126-1135. DOI: 10.16522/j.cnki.cjph.2019.10.004
Perspectives & Review

Study on the “Composition-structure-function” Relationship of Nanoliposomal Drugs

Author information +
History +

Abstract

Based on the concept of “structure pharmaceutics” and the significance of the composition-structurefunction relationship in the formulation design and optimization of nanoliposomal drugs, this paper summarizes the major structure and the in vitro/in vivo behavior studies of liposomes. The related characterization methods are also introduced. We expect to provide a reference for the targeted optimization and consistency evaluation of liposome drugs.

Key words

liposome / composition-structure-function relationship / characterization / consistency

Cite this article

Download Citations
WEI Xiaohui, XU Yuhong. Study on the “Composition-structure-function” Relationship of Nanoliposomal Drugs. Chinese Journal of Pharmaceuticals. 2019, 50(10): 1126-1135 https://doi.org/10.16522/j.cnki.cjph.2019.10.004

References

[1] BANGHAM A D, STANDISH M M, WATKINS J C.Diffusion of univalent ions across the lamellae of swollen phospholipids [J].J Mol Biol, 1965, 13(1): 238-252.
[2] ALLEN T M, CULLIS P R.Liposomal drug delivery systems: from concept to clinical applications [J].Adv Drug Deliv Rev, 2013, 65(1): 36-48.
[3] 鲁珊珊, 魏晓慧.抗生素脂质体的研究[J].中国抗生素杂志, 2018, 43(8): 979-989.
[4] MEERS P, NEVILLE M, MALININ V, et al.Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections [J].J Antimicrob Chemother, 2008, 61(4): 859-868.
[5] CROMMELIN D J A, DE VLIEGER J S B, MüHLEBACHS.Introduction: Defining the position of non-biological complex drugs.In: CROMMELIN D J A, DE VLIEGER J S B.Non-biological complex drugs: The science and the regulatory landscape [M].Cham: Springer International Publishing, 2015: 1-8.
[6] TOBLLI JE, CAO G, OLIVERI L, et al.Differences between original intravenous iron sucrose and iron sucrose similar preparations [J].Arzneimittelforschung, 2009,59(4): 176-190.
[7] CROMMELIN D J A, METSELAAR JM, STORM G.Liposomes: The science and the regulatory landscape.In:CROMMELIN D J A, DE VLIEGER J S B.Non-biological complex drugs: The science and the regulatory landscape[M].Cham: Springer International Publishing, 2015: 77-106.
[8] ZHENG N, JIANG W, LIONBERGER R, e t a l.Bioequivalence for liposomal drug products.In: Yu L X,Li B V.FDA bioequivalence standards [M].New York:Springer, 2014: 275-296.
[9] BARENHOLZ Y.Doxil?--the first FDA-approved nanodrug:lessons learned [J].J Controlled Release, 2012,160(2): 117-134.
[10] EMA.Myocet [EB/OL].https://www.ema.europa.eu/en/medicines/human/EPAR/myocet.
[11] EMA.Caylex [EB/OL].https://www.ema.europa.eu/en/documents/overview/caelyx-epar-summary-public_en.pdf.
[12] GABIZON A, CATANE R, UZIELY B, et al.Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes[J].Cancer Res, 1994, 54(4): 987-992.
[13] MOGHIMI S M, FARHANGRAZI Z S.Defining and characterizing non-biological complex drugs (NBCDs) – Is size enough? The case for liposomal doxorubicin generics(‘liposomal nanosimilars’) for injection [J].GaBI J, 2014,3(2): 56-57.
[14] GASPANI S, MILANI B.Access to liposomal generic formulations: beyond AmBisome and Doxil/Caelyx [J].GaBI J, 2013, 2(2): 60-62.
[15] 吴 刚, 周玉洁, 魏悦蕾, 等.两种主动载药的伊立替康脂质体释药行为的对比考察[J].中国医院药学杂志, 2018,38(16): 1686-1689.
[16] 顾景凯.DMPK研究中的生物分析: 从小分子、生物大分子、高分子聚合物到纳微尺度药物[C] // 中国药学会药物临床评价研究专业委员会2015年学术年会会刊.2015年中国药学会药物临床评价研究专业委员会学术年会.杭州: 中国药学会, 2015.
[17] HU X, ZHANG J, YU Z, et al.Environment-responsive aza-BODIPY dyes quenching in water as potential probes to visualize the in vivo fate of lipid-based nanocarriers [J].Nanomedicine, 2015, 11(8): 1939-1948.
[18] CHARROIS G J, ALLEN T M.Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity,and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer [J].Biochim Biophys Acta, 2004,1663(1/2): 167-177.
[19] 张继稳, 孟凡月, 肖体乔.从结构出发的制剂一致性研究策略[J].药学学报, 2017, 52(5): 659-666.
[20] 段效晖, 伍 丽, 李 雪, 等.同步辐射X射线显微成像研究环糊精自组装beads的三维结构[J].药学学报, 2018,53(2): 291-296.
[21] FUGIT K D, XIANG T X, CHOI DU H, et al.Mechanistic model and analysis of doxorubicin release from liposomal formulations [J].J Controlled Release, 2015, 217: 82-91.
[22] RUSSELL L M, HULTZ M, SEARSON P C.Leakage kinetics of the liposomal chemotherapeutic agent Doxil: The role of dissolution, protonation, and passive transport, and implications for mechanism of action [J].J Controlled Release, 2018, 269: 171-176.
[23] WEI X, SHAMRAKOV D, NUDELMAN S, et al.Cardinal role of intraliposome doxorubicin-sulfate nanorod crystal in doxil properties and performance [J].ACS Omega, 2018,3(3): 2508-2517.
[24] US FDA.Liposome Drug P roduct s : Chemi s t ry,Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation [DB/OL].https://www.FDA.gov/downloads/drugs/guidances/ucm070570.pdf.
[25] PECORA R.Dynamic light scattering: Applications of photon correlation spectroscopy [M].New York: Springer US, 1985.
[26] CARR B, MALLOY A.Nanoparticle tracking analysis–the nanosight system [EB/OL].http://www.me.umn.edu/centers/cdr/reports/NanoSightPaper.pdf.
[27] WRIGHT M.Nanoparticle tracking analysis for the multiparameter characterization and counting of nanoparticle suspensions [J].Methods Mol Biol, 2012, 906: 511-524.
[28] FILIPE V, HAWE A, JISKOOT W.Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates [J].Pharm Res, 2010, 27(5): 796-810.
[29] FISKER R, CARSTENSEN J M, HANSEN M F, et al.Estimation of nanoparticle size distributions by image analysis [J].J Nanopart Res, 2000, 2(3): 267-277.
[30] PERETZ DAMARI S, SHAMRAKOV D, VARENIK M, et al.Practical aspects in size and morphology characterization of drug-loaded nano-liposomes [J].Int J Pharm, 2018,547(1/2): 648-655.
[31] 徐 跃.用小角X射线散射研究纳米粒子的粒度分布[J].物理实验, 2002, 22(8): 38-39.
[32] TAKAHASHI N, HIGASHI K, UEDA K, e t a l.Determination of nonspherical morphology of doxorubicinloaded liposomes by atomic force microscopy [J].J Pharm Sci, 2018, 107(2): 717-726.
[33] LI T, MUDIE S , CIPOLLA D, e t a l.Solid s t a t e characterization of ciprofloxacin liposome nanocrystals [J].Mol Pharm, 2019, 16(1): 184-194.
[34] CIPOLLA D, WU H, SALENTINIG S, et al.Formation of drug nanocrystals under nanoconfinement afforded by liposomes [J].RSC Adv, 2016, 6(8): 6223-6233.
[35] LASIC D D, FREDERIK P M, STUART M C, et al.Gelation of liposome interior.A novel method for drug encapsulation [J].FEBS Lett, 1992, 312(2/3): 255-258.
[36] LASIC D D.Doxorubicin in sterically stabilized liposomes[J].Nature, 1996, 380(6574): 561-562.
[37] LI X, HIRSH D J, CABRAL-LILLY D, et al.Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient [J].Biochim Biophys Acta, 1998, 1415(1): 23-40.
[38] BALGAVY P, DUBNICKOVá M, KUCERKA N, et al.Bilayer thickness and lipid interface area in unilamellar extruded 1,2-diacylphosphatidylcholine liposomes: a smallangle neutron scattering study [J].Biochim Biophys Acta,2001, 1512(1): 40-52.
[39] 孙润广, 张 静, 齐 浩, 等.胆固醇对脂双层结构影响的SAXS和STM研究[J].生物物理学报, 2001, 17(1): 53-58.
[40] DEMETZOS C.Differential Scanning Calorimetry (DSC):a tool to study the thermal behavior of lipid bilayers and liposomal stability [J].J Liposome Res, 2008, 18(3): 159-173.
[41] CHOUNTOULESI M, NAZIRIS N, PIPPA N, et al.Differential scanning calorimetry (DSC): an invaluable tool for the thermal evaluation of advanced chimeric liposomal drug delivery nanosystems.In: DEMETZOS C, PIPPA N.Thermodynamics and biophysics of biomedical nanosystems[M].Singapore: Springer, 2019: 297-337.
[42] SCHILT Y, BERMAN T, WEI X, et al.Using solution X-ray scattering to determine the high-resolution structure and morphology of PEGylated liposomal doxorubicin nanodrugs[J].Biochim Biophys Acta, 2016, 1860(1 Pt A): 108-119.
[43] BILTONEN R L, LICHTENBERG D.The use of differential scanning calorimetry as a tool to characterize liposome preparations [J].Chem Phys Lipids, 1993, 64(1-3): 129-142.
[44] KITAYAMA H, TAKECHI Y, TAMAI N, et a l.Thermotropic phase behavior of hydrogenated soybean phosphatidylcholine-cholesterol binary liposome membrane[J].Chem Pharm Bull (Tokyo), 2014, 62(1): 58-63.
[45] WEI X, COHEN R, BARENHOLZ Y.Insights into composition/structure/function relationships of Doxil? gained from “high-sensitivity” differential scanning calorimetry[J].Eur J Pharm Biopharm, 2016, 104: 260-270.
[46] JIANG W, LIONBERGER R, YU L X.In vitro and in vivo characterizations of PEGylated liposomal doxorubicin [J].Bioanalysis, 2011, 3(3): 333-344.
[47] 朱育平.小角X射线散射 [M].北京: 化学工业出版社,2008.
[48] GINSBURG A, BEN-NUN T, ASOR R, et al.D+: software for high-resolution hierarchical modeling of solution X-ray scattering from complex structures [J].J Appl Crystallogr,2019, 52(Pt 1): 219-242.
[49] VARGA Z, BERéNYI S, SZOKOL B, et al.A closer look at the structure of sterically stabilized liposomes: a small-angle X-ray scattering study [J].J Phys Chem B, 2010, 114(20):6850-6854.
[50] LI T, CIPOLLA D, RADES T, et al.Drug nanocrystallisation within liposomes [J].J Controlled Release, 2018, 288: 96-110.
[51] ZUCKER D, ANDRIYANOV A V, STEINER A, et al.Characterization of PEGylated nanoliposomes co-remotely loaded with topotecan and vincristine: relating structure and pharmacokinetics to therapeutic efficacy [J].J Controlled Release, 2012, 160(2): 281-289.
[52] WEI X, PATIL Y, OHANA P, et al.Characterization of pegylated liposomal mitomycin C lipid-based prodrug(Promitil) by high sensitivity differential scanning calorimetry and cryogenic transmission electron microscopy[J].Mol Pharm, 2017, 14(12): 4339-4345.
[53] GABIZON A A, TZEMACH D, HOROWITZ A T, et al.Reduced toxicity and superior therapeutic activity of a mitomycin C lipid-based prodrug incorporated in pegylated liposomes [J].Clin Cancer Res, 2006, 12(6): 1913-1920.
[54] 陈召红, 刘皈阳, 魏亚超.脂质体包封率测定方法研究进展[J].解放军药学学报, 2011, 27(1): 79-82.
[55] 李唐棣, 郝丽梅, 梅兴国.脂质体包封率的研究进展[J].国外医学: 药学分册, 2006, 33(3): 224-227.
[56] 陈 春, 王艳艳, 彭 敏.阳离子交换树脂——HPLC法测定伊立替康脂质体包封率[J].现代中药研究与实践,2012, 26(6): 41-44.
[57] 欧 婷.脂质体释放度检查方法的标准化研究[D].北京:中国食品药品检定研究院硕士学位论文, 2017.
[58] 王笑笑, 王君吉, 赵 源, 等.质量源于设计(QbD)理念在脂质体开发中的应用[J].中国医药工业杂志, 2018,49(12): 1635-1643.
[59] CERN A, NATIV-ROTH E, GOLDBLUM A, et al.Effect of solubilizing agents on mupirocin loading into and release from PEGylated nanoliposomes [J].J Pharm Sci, 2014,103(7): 2131-2138.
[60] KANAI M, RAZ A, GOODMAN D S.Retinol-binding protein: the transport protein for vitamin A in human plasma[J].J Clin Invest, 1968, 47(9): 2025-2044.
[61] 王 兴, 王瑶琪, 张 强, 等.纳米药物递送系统的细胞药代动力学研究进展[J].药学学报, 2018, 53(10): 1620-1629.
[62] 王 浩.盐酸多柔比星脂质体注射液的纳米药代动力学研究[D].长春: 吉林大学博士学位论文, 2016.
[63] AMITAY Y, SHMEEDA H, PATIL Y, et al.Pharmacologic studies of a prodrug of mitomycin C in pegylated liposomes(Promitil?): High stability in plasma and rapid thiolytic prodrug activation in tissues [J].Pharm Res, 2016, 33(3):686-700.
[64] HANSEN A E, PETERSEN A L, HENRIKSEN J R, et al.Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes [J].ACS Nano, 2015,9(7): 6985-6995.
[65] EDMONDS S, VOLPE A, SHMEEDA H, et al.Exploiting the metal-chelating properties of the drug cargo for in vivo positron emission tomography imaging of liposomal nanomedicines [J].ACS Nano, 2016, 10(11): 10294-10307.
[66] CERN A, MARCUS D, TROPSHA A, et al.New drug candidates for liposomal delivery identified by computer modeling of liposomes’ remote loading and leakage [J].J Controlled Release, 2017, 252: 18-27.
PDF(6908 KB)

660

Accesses

0

Citation

Detail

Sections
Recommended

/